If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-9x-100=0
a = 10; b = -9; c = -100;
Δ = b2-4ac
Δ = -92-4·10·(-100)
Δ = 4081
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-\sqrt{4081}}{2*10}=\frac{9-\sqrt{4081}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+\sqrt{4081}}{2*10}=\frac{9+\sqrt{4081}}{20} $
| 2(n-3)=4*(n)+1 | | 5.73=x+7.21 | | 2x+4x+3-x+6-3x=99 | | 1X+3y=129 | | -48h-265=-553 | | 3x-7+2x=15 | | x-1/2=48 | | 1-5x=7-4× | | 3s+11=8s-34 | | 6x=7200 | | 5v-96=v | | z/5=1/2 | | -5=3(b+2)-6b | | 3/2(4/7v+1/8)-1/2=-955/224-11/4v | | x-7+48=180 | | -10(x=4)+56=-12-12 | | .50(.90-y)+.20y=4.05 | | 55*2=x | | 16-6x=24-6x | | 9-(2+(-3y))=6+2y+(5+y) | | 8w-12w=12 | | (-x)(0.026-x)=1.4x10^-3 | | 40+6x+4+7x-7=180 | | 5x/3x+4=7 | | 14=9-5p | | -(5x-6)=-5x | | 6x+4+7x-7=180 | | 8n+(9+7n)=31+7n | | -(y+4)+5=4y+1-5y | | 15/8=1/8+3/4t | | B=7/4(j-33) | | 4x-10=7x-8 |